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SUMMARY

A mathematical method is presented for the determination of the normal
antisymmetric end loads from known values of the bulk stress on a lateral surface of a three
dimensional rectangular prism. This extends previous work which considered only the
symmetric loading case. A computer program has been developed to implement this method,
and results for an arbitrarily chosen case are presented.
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1. INTRODUCTION

The stress distribution in rectangular prisms subjected to ceriain normal end forces
on its two opposite faces is a fundamental problem in Applied Mechanics. Reference [1]
supplies a method for calculating a symmetric end loading, assuming that the bulk stress
(o2 + 0y + 0,) on a lateral surface of the rectangular prism is known (i.e. measurable).
Such a measurement could be obtaincd using advanced thermal emission techniques. The
aim of this paper is to extend this concept to the case where an antisymmetric end loading

is applied.

A method for calculating the bulk stresses for a given antisymmetric end loading is
presented in [2]. This will be referred to as the Direct solution. In the Inverse method
the end loading will be determined from a known distribution of bulk stress values on a
lateral surface. In this case, bulk stresses on the lateral surface will be simulated using

the Direct solution.

Figure 1 shows the orientation of the rectangular prism under consideration. The
equations supplied in [2] allow calculation of the stress distribution on a lateral surface
for an applied loading which is antisymmetric in y and symmetric in z and z. This paper
extends this solution to calculate the stress distribution on the same lateral surface for a
loading antisymmetric in z and symmetric in z and y. Inverse solutions for both loading
cases have been derived. A single Inverse solution could be used to determine a loading
antisymmetric in y from the stress distribution on the face y = b, or to determine »
loading antisymmetric in z from the stress distribution on the face z = c. However, two
separate solutions are neccessary to determine the applied antisymmetric loading if only
one lateral surface is available (or has been prepared) for bulk stress measurement by

thermal emission.




R

2. DIRECT SOLUTION

The bulk stresses on the surface y = +b are required for the case of a rectangular

prism subjected to certain end forces. The two end loading cases considered are:
(1) Loading antisymmetric in y, symmetric in ¢ and z
(2) Loading antisymmetric in z, symmetric in z and y

2.1 Loading Antisymmetric in Y

First define the Galerkin vector F.

F =iF, +jF, + kF,
where

Hy,
F = z Z o co:ha [@anz cOsh apaz — (20 + apma coth apaa) sinh apmz) x

X BT M=y
cos — sin
c 2b

Fy = ZZ Yo smh G Py sink oy — (20 + Bubtanh B.1b) cosh fy) x

nrz Inx
X €08 —— cO§s —
c a

L
Z Z 'MC ‘YIMZ cosh YiMZ — (2V + Timc coth ’nMC) sinh ’ﬁMZ] X
T M Yisr COSh Yine

ixz |, Mny
X €os — sin
a 2b
and
2 )2 nry?
= () +(%)
2
s _(nmyE, (i
ﬂnl - ( ¢ ) + (a)
Ir\? Mx\?
w=(2) + (%) 1)
where

,n=20,123.. and M=1,3,5,7..




The stress components o, and 7y, are then related to F by the following equations.

2

o = 2(1 - l/)ga;VzF, + (qu - %) div F, (2)

(- 8 o2 8 .
Tyz = (1 - l/) (EV Fy + ‘6';V Fz) - @dlv F. (3)

This gives:

H .
Z Z coshl‘:: a [(1 + apma coth ay,a) cosh aynz — ayaz sinh ay,z]
Mn

. M=y nrz Kb irc
X sin %5 cosT + ; Z m[bn T Slnhﬁnly + ( a )

Irx

X [(1 — Buibtanh G,;b) sinh By + Bary cosh ﬂ,.,y]] cos % cos —

a

Liyc M2x? rb\?
+ Z Z T cosh e [2:/ 1 coshyiu2z + (T) [(1 — yiarc coth ypec)

x cosh Ypz + Mpz sinh 'ymz]] cos 1—7:-13 sin Aﬁ:y (4)

HyaMnn?
vz =— Z Z i [[1 — (2v + apgpa coth ay,a)] cosh ay.,z
M

~ 2aj,becosh ayaa

,mrb

Ysin 2 4 Z Z Bucsinh Bb [,Buly sinh Bny

lrz L{MMWC
— B btanh B,,bcosh ﬁ",y] sin 22 cos = + Z Z 5;'————

+ ap,z sinh au..z] cos

X [‘y,uc coth ypesinh ypz — vz cosh -y,Mz] sin :y cos — (5)

Expressions for 0,,0,,T;y and 7,, can be written in a similar manner.

With reference to Figure 1, the following boundary conditions apply.

on y=zb; o0,=0, Tzy =0 and 7y, =0,

on z=x4ec; o,=0, T2 =0 and 1, =0,

on z==xa; 0:= fa(y,z), Tzy=0 and 75, =0. (6)
3
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All the shear stress boundary conditions are exacuiy satisfied by (5) and similar ex-
pressions for 7., and 7,,. The normal stress boundary conditions are approximately
satisfied by equating low order Fourier terms in equation (4), and in similar expressions
for 0, and ¢,. Taking the double Fourier transforms of these three equations (with their

approximated normal stress boundary conditions) gives the expressions {7),(8) and (9).

Z4Hun6] tanhauna(‘-l)H(M_l)/z V(n?ra) ( o+ ix 2)
M apnb(afg,a? + 1) c ) e

26,
) ]+K"'6’( smh2ﬂ..,b)

Z 4Lm53 tanh yure(—1)*+M-1/2 ["(ln) (rinee® + n?7?)
M Nb(Yc? + n?x2)? %M

(o]

where
=2 when n=0, §=1 when n#0
6=2 when n=0 or I1=0, 8§ =1 when n#0, [#0
83=2 when [=0, & =1 when [#9
Z 4Hy, tanh apaa(~1)+" l/(M1ra)2(0‘2 2 4 22
~  ayac(af,a? + Bx?)? 2b un@
N (m)’,z,,z] 4 3 o coth b~ 02
¢ 2p2 4 M2r2 :
n Buic| 87 1
2,2 2.2
) e 2 (0
4 c 4
2ime _
+ Liméy (1 + sinh?‘?mc) =0 (8)
where

=2 when [=0, & =1 when [#0




2ayne ) Z 4K, 81 coth B, b(—1)HM-1)/2
sinh 2a,.a Buia [ﬂj,b’ + ‘M:_*"]z

ke

I4+n
N Z 4L tanh yypc(—~1) (M1rc ‘)’uuc +n 1r2)
i

Ysea(Yaye? + niw?)?
{
+ (—Z—C) nzr’} = Jun (9)

§=2 whern n=0, § =1 when n#0

Hyubs (1

where

and

1+ M z
Jum = abe | . fa(y,z)sin 2:!’ cos E— dydz

Equations (7),(8) and (9) may then be solved simuitaneously for the unknown Fourier
coefficients. The stress at any point in the prism may then be calculated by substituting

the Fourier coefficients into equations (4),(5) and similar.

Since the given equations are valid only for self equilibrating end loads, it is necessary
to modify the required end loading f(y,z) so that the net force and moment acting on

each end face is zero. This produces a modified loading distribution fa(y,z).

M
fz(y,z): [f(yvz)“ch?] (10)
where M is the total moment due to f(y,2), i.e.
+b  pte
NIRRT (11)
- —c

The previous equations calculate the stresses due to the modified loading fa(y,z). The

stress component o, calculated from equation (4), is a Fourier series approximation to

fa(y,2).




2.2 Loading Antisymmetric in Z

Again define the Galerkin vector F.

F =iF, +jF, + kF,
where

H.na
= Z Z o [amnz cosh amnT — (2V + amya coth a,ya) sinh annz)x
e ol v cosh a,ya

mry . N=:
sin

b 2¢

X COs

Kb .
Fy= %: ; T cosh ﬂmb[ﬂ"’y cosh Byy — (2v + Bmbcoth Bab) sinh Buy] x

irz . Nnz
X COS — sin
a 2¢

Limc .
Z ! Mz sinh i 2 = (20 + Yimc tanh 4 ) cosh 7y, 2] %

~]

m lmSInh‘nm
lrz mny
X €OS —— COS
a b
and
2
s _(mayt, (N
Gmy = ( b ) ( 2c )
2 2
(24 (5)
2¢c a
ix\? mr 2
T = (;‘) + (T) (12)
where

{im=0,1,2,3... and N =13,5,7..




Substituting these equations into equations (2) and (3) gives:

= Z Z Hnya (1 4+ apya coth o, na) cosh anyz — @y sinh Oy N T

cosh a,,_Na
2
mry Kb N2x? lwc)
X COS P sm + Zzﬁmcz cosh b [Zv 2 cosh Bmy + ( -
N l
X [(1 — Bmb coth Bpb) cosh Bumy + Bmy sinhBMy]] sin 222 cos —1&-{

Limc . Ixb)?
+ Z Z 22 b sllnh PP [2"’"27"2 sinh Yz + (T) {(1 — yimctanh yimc)

. l
% sinh Y,z + Yimz cosh 'Ylmz]] cos iz cos mny (13)
a
N=?
=7 z Z P am VT [1 - (2v + ann coth amna)] cosh apyz
202, ,be cosh amna
N KmNwb
+ anyz sinh a,,.;v:c] cos —— Z E e codh Bk [ﬂmy cosh By
. l1r:c Li.mnc
— Bpbcoth Bybsinh ﬂmy} cos OS5 —— + Z Z Y
l
a

Again, expressions for 0,,0;,7zy and 7., can be written in a similar manner.

The boundary conditions of (6) still apply, with the exception that f3(y,z) is now used

to denote the modified applied loading, i.e.

on y=4zb; o,=0, Toy =0 and 7. =0,

on z=+c; 0,=0, 1z: =0 and 7 =90,

on z==a; 0,= .fS(yaz), Tey = 0 and 7, =0. (15)
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Again, all the shear stress boundary conditions are automatically satisfied by (14)
and similar expressions for ., and 7,,. The normal stress boundary conditions are ap-
proximately satisfied by equating low order Fourier terms in equation (13), and in similar
expressions for o, and ¢,. Taking the double Fourier transforms of these three equa-

tions (with their appoximated normal stress boundary conditions) gives the expressions

(16),(17) and (18).

mNa'Z + 12”2)

3 4H,,y tanh a,ya(—~1)*™ [u ( Nwa)z(az

~ annb(ad ya® + 13n2)? 2c
2
mna 28Bmb
+ | —=—) Px? K6(1+———~)
( b ) ”]+ M sinh 28pmb
- 2 .
m 6[ 2 .2 Mix? a 4
Vim0 | Vim € + 4
+(m7rc)2N21rz -0 16
5 vl (16)
where
6122 when 120, 51‘—‘1 when I;éO
_ 2
3 Mt tanh el ) (72 et
= ampyc(al ya? + 2r)2 b
2 - _1\ym+(N-1)/2
. (Nwa) lzwz] N Z 4K 6, tanh?mb( 1)2 i
2c 5 BB b? + m2x2)2
b 2 2
x [ (ll) (8567 + m*x?) + <—N”b) mzvrz}
a 2¢
27[,"0
Lio3l1~——D—— ) =
+ o 3( sinh2‘y¢,,.c) 0 (17)
where

§=2 when m=0, § =1 when m#0
62=2 when 1=0, 5=1 when [#0
83=2 when m=0 or I=0, 8=1 when m#0, 1#0




2a,.na Z 4Ky tanh Bpb(—1)"™
sinh 2a,,ya Ba(B2b? + m2x?)?

) s ()]

- 2
+ Z 4le61 cOth‘Ylmc(_]')H-(N V72 [u(——m"rc) (72 52 + __Nzﬂ'z)

Hoby (1 4 20mne

2 im

i 7lma[7mcz + NQT,] b 4
2.2
+ (’L°> Now ] = Jy (18)
a 4
where
=2 when [=0, 6§ =1 when [#0
and

+b N
Iy = abc/ f3 (y,7) cos m;ry sin 2:2 dyd:z

Equations (16),(17) and (18) may then be solved simultaneously for the unknown
Fourier coefficients. The stress at any point in the prism may then be calculated by

substituting the Fourier coefficients into equations (13),{14) and similar.

The required end loading f(y,z) must again be modified so that the net force and

moment acting on each end face is zero. This produces a modified loading distribution

f3(y, 2).

IM:
f3ly,z) = [f(yaz) - m] (19)
where M is the total moment due to f(y,z), 1.e.
+b
M= / f (v,2)zdydz (20)

The previous equations calculate the stresses due to the modified loading f3(y,z). The

stress component o, calculated from equation (13), is a Fourier series approximation to

fi(y, 2).




3. INVERSE SOLUTION

The main aim of this section is to provide an Inverse solution to the problem, which
involves calculation of the end stress o, from the known bulk stress distribution (o, +
oy + o) on one lateral surface of the prism. Consider the case when we know the bulk
stress distribution on the surface y = +b. On this surface, oy = 0, and so the bulk stress

is 05 + 0,. As for the Direct solution, two loading cases are considered, i.e.
(1) Loading antisymmetric in y, symmetric in = and z
(2) Loading antisymmetric in z, symmetric in z and y

3.1 Loading Antisymmetric in Y

By summing equation (4), and a similar equation for o, the following expression for

the bulk stress is obtained.
HMna .
oy = Z Z {(1 + apna coth aya) cosh ay,x — ap,z sinh aM,.a:}

cosh ay,a
Kb Ine
Z E FZcTsinb B, b[2un #Z sinh By + ( p; )

> Inz

X {(1 ~ Bubtanh B,;b) sinh B,y + B,y cosh ﬂ,.,y}] cos E:— cos —

Liyc Mix? Inb\?
+ZZ 5 M [21/ y COSh‘hM2+(—;) {(1--1wccoth-y,,,,c)

Yirb? cosh e

2
X sin

Mny
2b

Lyc '
+ Z Z cos}i:, {(1 + mmc coth yiyc) cosh yiyz — iz sinh 'm,z}

. Irz .
x cosh yipez + Ypez sinh ‘m,z} cos — sin
a

2 82 cosh ayma c

m . Mry ; M2x? nwb\?
xcos-a—sm 7 +§;am [21/ y coshau,‘::+(—)

X {(1 — Qpqa coth apma) cosh g + ayaz sinh au..::}] sin M2’;y cos nxz
S12n2 nra 3
+ Z Z 8 xa’ mh Ab [? Ix* sinh B,y + ( ) {(1 Bubtanh 8,,b)
x sinh By + Buy cosh ﬂ,.y}} cos %ﬁ cos !f; (21)
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By taking the Fourier transform of this equation, as shown in Appendix A, the following

results are obtained.

abe ~c J~a

where

*e pe Ixz  nwz
o+ 0 cos — cos — dr dz
(oz + o)l a 2¢

—1)H{m-1)/2 2,2 2
sl P W L] PN
W bfod + ()] “

nrb\? [In\?
+ —C_ —a— tanh Qarn @
463L1u(—1)n+(M_1)/2{ 3 - {VM%rz {‘72 + (nx)z]
Wbkt ()]

2 2
+ () (%)} sanh e
a C

(a2n2 + czlz) (21/ +1~ Bubtanh Bub+ Bubcoth fub)  (22)

+

K,‘,ég‘;rz
ﬂfzazcz

61=2 when n=0, 6=1 when n#0
$2=2 when 2=0 or 1=0, &=1 when n#0, 1#0
83 =2 when =0, 6 =1 when [#0

Equation (22) may then be applied for each value of n and [ to give a set of linear

simultaneous equations with the Fourier coefficients Hy,,, K, and Ly as the unknowns.

Since the boundary conditions of equation (6) still apply, equations (7) and (8) are also

used in conjunction with (22). In effect, equation (22) replaces equation (9) for the Inverse

solution. This imposes the restriction that [ = (M — 1)/2, so that the number of linear

equations produced by (7) (8) and (22) equals the number of unknown Fourier coefficients.

The resulting set of equations is then solved to produce a set of Fourier coefficients Hy,.,,

K., and L,y for the Inverse problem. Equatiorn (4) is then used to obtain the applied

siress o5.
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3.2 Loading Auntisymmetric in Z

By summing equation (13), and a similar equation for ,, the following expression for

the bulk stress is obtained.

m 3 .
E E A {(1 + amyacoth anya) cosh anz — @y sinh a,,,,,::}
o cosh a,na

N2y2 lre
xcos-———sm +ZZﬂ czc(:oshﬂmb[zu , COShﬂmy+( 2 )

rz Irz
cos ——

{(1 — Bab coth By b) cosh By + By sinh By } sin

L;,..c
+ Zz'y,’,,,bz smh‘n,,.(:[zvm x2 sinh Yynz + ( = ) {(1 — “Yimc tanh i, ¢}

irx mn
X Sinh Yz + Yim 2 cosh'y,,,,z}] cos -1;—- cos *—5}—1

Ly )
* E Z slnl: 7:: { (1 + Y€ tanh 3y, €) sinh ¥, 2 ~ 1wz cosh ‘yzmz}

2
irz m1ry H,.xa 2 2 Nm‘))
% — O 2vm“n? cosh apyz + | ——
cos cos + ZZ a2 ,b? cosh a e Y COSH Cmnv 2c

mny . N=xz
sin

% {(1 — oypya coth ay,ya) cosh a,, pz + a,, 5T sinh amﬂz}] cos

2c
+ Z Z wix® cosh fay + Nra)® {(l — Bpb coth By b)
ﬁz a’ cosh Bnb m 2c e ~
X cosh Bmy + Bmy sinh ﬂmy}} sin %—:—i cos _Izrai (23)
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By taking the Fourier transform of this equation, as shown in Appendix B, the following

results are obtained.

1 +e +“( + o)l Irz . Nnz
- . hiled
el I oz +03)| _, cos — sin —~

4H,, p(—1)™H 1 Ir\?
B Z b[ 2 N+ (,,.)2]2 [afm-i- amnbz{umzwz [a'an * (—‘;)
m X N ra

+ — tanh a,ya
2c a

_1ym+(N-1)/2 2
461 Lim( 1) 3 [’rﬁ,. + 1 {umz‘lr2 “/12,.. + (ﬂ)
- b[7,2 + (¥)2] Yim b 2c

+ | — —_ coth yme
a 2c

+ c2[2] (20 + 1~ Bubcoth fb + Brubtanh Bub) (24)

drdz

Kabyx® [ N2d?
Bhatc? | 4

where

§=2 when [=0, 6§ =1 when [#0

As for the case of an applied loading antisymmetric in y, a set of Fourier coefficients
H.n, Ky and L, may be found by solving the set of simultaneous equations produced

by (16),(17) and (24). Equation (13) is then used to obtain the applied stress o,.
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4. RESULTS AND DISCUSSION

The Direct and Inverse programs were implemented using FORTRAN 77 on an Apollo
DN10000 computer. The Gaussian Quadrature method was used for the integrations
required by equations (9),(18),(22) and (24). The resulting sets of linear simultaneous
equations were solved using Gaussian elimination with full pivoting. Double precision

was used for all calculations.

4.1 Direct Results

The equations given in the previous sections are applicable to a prism with an arbitrary
rectangular cross section. However, for illustrative purposes, a square cross section with
a square loading area was considered, where b = ¢ = 2 and k; = ky = 0.5. First consider
a loading symmetric in = and y, and antisymmetric in z. With reference to Figure 3, a
stress of f(y,z) = 1+16 was applied inside the loading area, with f(y,z) = 0 outside the
loaded area. Equations (19) and (20) must first be used to produce a seli-equilibrating
loading f3(y, z) on the end face. From (20) the total moment is:

+c ptb

M= f(y,2)2 dy dz

—c -

+kyb Q +kac
=/ [/ —16zdz+/ lﬁzdzJ dy +0
kb —kac Q

= 16k3c?2kyb
= 32k%k;bc?

14




Applying (19) gives the modified loading function.

B = [ 1002 - o |
2 z
= f(y,2) 24kzk1
= f(y,z) — 1.5z

Hence,

f3(y, z) = —1.5z outside the loading area
= +16 — 1.5z inside the loading area, 0 < z < kac¢

= —16 — 1.5z inside the loading area, — ke < 2 <0

Sample results from the Direct method for an applied loading antisymmetric in z are
shown in Figure 4. Plots of the bulk stress distribution on the y = 4b surface and the
end stress o, are presented. These results were obtained using seven terms of the Fourier
series (i.e. I,m = 0,1,..7 and N = 1,3,...15), which showed good convergence. Shown in
Figure 4a is the surface plot of o, with its corresponding values indicated in the contour
plot, Figure 4b. The plots show the stress values ranging from —18.0 to +18.0, in good
agreement with the applied stress field f3(y,z). The bulk stress distribution o} on the

y = +b surface is shown in Figures 4c and 4d.

Similar results are shown in Figure 5 for an applied loading which is antisymmetric
in y, but symmetric in z and z. The modified loading function f3(y,z), produced by

equations (10) and (11) is shown in Figure 2 as:

f2(y,z) = —1.5y outside the loading area
= 416 — 1.5y inside the loading area, 0 < y < kb

= —16 — 1.5y inside the loading area, — k)b <y <0

156




4.2 Inverse Results

In the Inverse problem, the bulk stress field, generated by the Direct method, is used
to calculate the applied end stress. For comparison, the results of the stress distribution
o, obtained from both the Direct and Inverse methods, at different Fourier indicies, are
presented. Figure 6 shows the results obtained for an applied loading antisymmetric in z,
symmetric in = and y. Figure 7 shows similar results for an applied loading antisymmetric

in y, symmetric in z and z.

Reference [1] presented similar results for the stress distribution for a prism with
symmetric end loads. It also demonstrated that more Gauss points are needed for numeric
integration to obtain a reasonable Inverse solution for a high number of Fourier coefficients.
The antisymmetric solution showed a similar trend. The results presented in Figures 6
and 7 use the minimum number of Gauss points to obtain a reasonable solution. Further
increases in the number of Fourier coefficients and Gauss points were not warranted for

preliminary work due to the large increase in computer resources required.

5. CONCLUSION

This work has successfully extended previous work on the stress distribution in rect-
angular prisms to include the case of antisymmetric end loading. This distribution may
be calculated from a set of bulk stress measurements on one lateral surface of the prism.
Analysis has been performed for the case where the bulk stress distribution used in the

Inverse method was produced by the Direct method.

Although the concept has been successfully proven, a considerable amount of work
will be required to extend this methodology to a procedure which can be routinely used

for the analysis of thermoelastic measurements from real structures.
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Fig. 4d Bulk Stresson y= b

FIG.4 DIRECT SOLUTION FOR APPLIED LOADING
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Fig. 5a Applied End Loading

Fig. 5b Applied End Loading Fig. 5d Bulk Stresson y= b

FIG.5 DIRECT SOLUTION FOR APPLIED LOADING
ANTISYMMETRIC IN Y
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Direct Solution Inverse Solution

Fig 6a. I,m = 0,1; N = 1,3. Two point integration.

Direct Solution Inverse Solution

Fig 6b. {,m = 0,1,2; N = 1,3,5. Two point integration.

Direct Solution Inverse Solution

Fig 6¢c. ,m = 0,1..3; N = 1,3..7. Three point integration.
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Direct Solution Inverse Solution

Fig 6d. I,m = 0,1...4; N = 1,3...9. Four point integration.




Ditect Solution Inverse Solution

Fig 6e. I,m = 0,1...5; N = 1,3...11. Four point integration.
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Direct Solution Inverse Solution

Fig 6f. I,m = 0,1...8; N = 1,3...13. Five point integration.

Direct Solution Inverse Solution

Fig 6g. I,m = 0,1...7; N = 1,3...16. Five point integration.

FIG. 6 DIRECT AND INVERSE SOLUTIONS FOR APPLIED
LOADING ANTISYMMETRIC IN 2
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Direct Solution Inverse Solution

Fig 7a. I,n = 0,1; M = 1,3. Two point integration.

Direct Solution Invezse Solution

Fig Tb. I,n =0,1,2; M = 1,3,5. Two point integration.

Direct Solution Inverse Solution

Fig 7¢. I,n = 0,1...3; M = 1,3..7. Three point integration,

Y

Direct Solution Inverse Solution

Fig 7d. I,n = 0,1...4; M = 1,3...9. Four point integration.
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Direct Solution Inverse Solution

Fig 7e. I,n = 0,1...5; M = 1, 3...11. Four point integration.

Direct Solution Inverse Solution

Fig 7. I,n = 0,1...6; M = 1,3...13. Five point integration.

Direct Solution Inverse Solution

Fig 7g. {,n = 0,1..7; M = 1,3...15. Five point integration.

FIG.7 DIRECT AND INVERSE SOLUTIONS FOR APPLIED
LOADING ANTISYMMETRICIN Y




APPENDIX A

DERIVATION OF EQUATION (22)

From Equation (21)

oy = Z Z Hune {(l + agnacothay,,a) coshay,z — oy, .z sinh a.,,.::}

cash ay.a

. M
x sin

Ixc\?
cos +Zzﬁ7c’smhﬂ b[2vn2,r=smhﬂ...y+ ( 2 )

xZ Xz

X {(1 ~ Bubtanh 8,,b)sinh 8,y + ﬂ.,ycoshﬂ..y}] cos —'LC - cos

a

Lyye M?x? Ixb\?
* Y T cosht [2" 7 comher o+ () {1 vmecoth e

Mry
2b

[}
X COSh ¥y p02 + Yimez sinh y, 52 }] cos xz sin
a
+ Z Z Lewe {(l + Yearc coth vy, ¢} coshv15z — 4,52 sinh -y,,,z}
cosh v,
M1I'y M3g2? nnb ) ?
x cos — sm + E Z a.’hb’ cosha.,,a [21/ 3 coshay,.x + (—c—

M=y nrz
cos —
c

X {(l — ay,acoth ay,,a) cosha,,,.x + oy, zsinh a,,,,z}] sin

nxa)

+ Z 2 azaz smh o [2.,12,,2 sinh B,y + {(1 - B.btanh 3,,b)

Ixz

x sinh 8,y + .y cosh B,,.y}] cos ﬂ cos ——

On a lateral surface of y = b, o, = 0 and so the bulk stress on this surface becomes o}, =

0z + 0,. Putting y = b into the above equation, and noting that sin X% — (~1)(M-1)/2
for M = 1,3,5..., yields the following resuit.
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APPENDIX A

H, —1 (M-1)/2 . nr:
oy = Z Z ——“—'%tfs—ha)l—u;;——{(l + ay,,a coth ay.a) cosh ay,.z — ay.z sinh a.,,,z} cos - {I)
Ixc\?
+Ezﬁ3c’mbﬁ : [z.m ** sinh Bub + ( ) {@-- s.btanh b
1

x sinh 3,6 + Bubcosh ﬁ,.b}] cos E cos —’ai (1n)
Lu‘c(_l)(u—l)/l ) M2x3

+ Zl: % b etk 2v y coshyuz + {(1 — Yine€ cOth 715,0)

X cosh Yipz + Yipez sinh v,z }} cos %—J—! (1I1)
L -1 {(M—-1)12 Irx

+ 2‘: ; %{u 4+ Yine cOth v, 4¢) cosh 1152 — vipez sinh 1...} cos - (1v)
Hyuo{~1)M-1/2 ] p3g2 nxb\?

+ § ; a3 bicoshan.a 2v n cosh apnz + - {(1 ~— O coth ay,.0)

x cosh oy, z + au.,.z sinh a,,,_z}] cos 7_'_:2 (V)

ab
- Z Z 2 a’Isimhﬁ b [2"” wsinh B, + (222) (1 - Bubtanh )

x sinh 3,,b + B..bcosh ﬁ...b}] cos —i cos LE (VD)

a

To determine the Fourier coefficients Hpr,, K, and Ly it is necessary to take the double
Fourier transform of the above equation.

+c +a
/ / (0z + ;) cos p_:_{ cos +— q1r- dzdz
—-a

< +a
=/+/ [(I)+(II)+(III)+(1V)+(V)+(VI) cos”l;fcosﬂ:id:d;

Note that p and g are now fixed positive integers.
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Integrating the RHS, taking term (I)

+c
/ / (I)cos—-——cos—c—d.td

_1)(M-1)/2 +a
= Z Z Huna(-)77 7 [(1 + Qipr, @ cOLh Qun ) / cosh upen cOS p:z dz
-a

cosha,,.a

+a +c
. T nxz qxz
- Qpqn z sinh ay,. T cos prz dz cos — cos — dz
a e c ¢

-1\
2ol

_1\(M-1y2
_ 5 Hach ()M [(1 + auya coth a.a)

cosh ay.a o+ (?)
2
_ 2af,”a(—l)!’: coshap.a + 200 (1) [a'z'" _2(:“1) ] sinh au.,a]
ol + (%) [et + (%)

ZZH,,,.Q..,_&(:C( 1)pHM-1)/2

ab.+ (%)’

[( 1 + apaa coth ay,a) tanh a0

— Opaa + AR 5 tanh au,_u]

Put [ = p and simplify to give :

Z 4H,..a} ach (—1)+M-1)/?

T e (T

tanh ay.a

where
§=2 when n=0, 8§ =1 when n#0

Taking term (II)

/; / (h)cos-——cOs 9 drd:

' —EZ ﬁ’c’smhﬁ b[Zun x* sinh B,,b + (l”c) {(1 ~ B.ubtanh §,;b)

nxz qxz

+c
x sinh 8.,b + ﬂ_,bcoshﬂ,.,b}] / cos T cos P2 dx / cos — cos ~— dz
—c <

=———_——3,§g'i::6[23,,b [2un x?sinh 8,0 + (I‘Kc) {(1 — A.btanh A3,,b) sinh B.,b + B.,bcosh B, }]

¢ l 32
= Kﬁ;?’ [Zvnzg’ -+ (_:_’C_) {(l - ﬂ...btcnhﬂ,.,b) +ﬁ,,bco‘hﬂ_'b}]

SRR SSRGS it inn wormmteman - |
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APPENDIX A
where
62=2 when n=0 or =0, 6=1 when n#0, [#0

Taking term (III)

/ / (111} cos PTZ 0s 22 dzd:
_ Lic(—-1)M-1)/3 Mix?  (lxb
= 2,: %: AT coshyme {21/ 3 + - (1 — Y€ coth ‘7...c)}

+c b\ 2 +¢ x:
x/ cosh7..,zcosg’r~zd:+ (I—) 1,.,/ :sinhw.,zcosq—c—-d:
c a -

-c <

+a 1
r ]
X cos —- cOS ikl dz
—a a a

_x Linbsac(~1)M-112 M?z?  (lxb
N ZM: 712ub2 coshy,,¢ {Zu 4 * a (I ~ e coth ‘huc)}

el —1
X -M—l)—, sinh v, ¢ + (hb) M'_)‘? cosh yuc
T+ ( ) a The + (L)

~ (.[llf) . 2(—‘1)9[7:2:"' (’5)2] sinh, C]
[

2 2
o 7 L))

2L .6 —1)eH(M~-1)/2 M2x2 Ixb
S kil F W +(*) (1 = T coth 7ec) }
M ’Ilnb2 [7|7u+ (g:—) ] ¢

lrb\? Inb\2 42, ~ (£)*
x tanh yiuc + (j—b) TraeC — (_x_b) ‘l'"——(—‘,r)—ztanh-y.,,c
. . e ! a Yo+ (lc—)
Put n = ¢, re-arrange and simplify to give:

— 4L,y baac(—1)PHM-1)3 [,,Mzw’ (Iarb)z (g{z)

tanh v, uc
2 2 M
e O IR S R W b ]

where

63=2 when [=0, 6=1 when [#0

2 i
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The integrals of parts (IV) (V) and (VI) were derived using the same approach as showw

in (I) (II) and (III).

+¢ p+a
/ / (IV)cos cos——-—dzd

-y by

e CT

tanh v, ¢

+c
/ / (V)cos——cos——d.‘cd
—e ¢

4H,,.61ac(~1)!HM~1)/2 [uM"lr2 (n-;rb)2
% ouabtfad, + ()] 4

+c
f f (VI)cos—cosﬂdzaL
-c

_ K.le62
_————a?.a

where
=2 when n=0, & =1 when n#0

[2.,12,,: + ("C_E)2 {(1 — Bubtanh 8,b) + B..bcoth ﬁ,,,b}}

=2 when n=0 or =0, & =1 when n#0. [#£0

63=2 when 1=0, 6 =1 when [#£0
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The individual integral components may now be summed to give the following.

/+c /:+<= [(I) + (I + (I + (V) + (V) + (VI)] cos p:z cos q:z deds
- 4H, 5108 ac(~1)+M-1)/1
; [a}... + (!‘1)2]r
2
I+(M-1)/ 3.2 . %-
+; 41‘11::61T(un1) ;‘:) : 2[ L (ncb) 2 ( ) z] tanha,,.a

o2+ (%)
K, abé

R [zuu’ 1y (' ) {(1 — Bubtanh Bub) + Aubcoth ﬁ,,,b}]

tanh ay.a

“+—

+_K5;5: [2:42,1 (mra) {(1 — B.btanh B,b) + B.bcoth g”,b}]

483 Lyseac(— 1)n+(M l)/?[ M3ix? (lfb) ("T) ]tanh'y
(]
nr
(3

; 7lf[7lu+ (=5) T The + ( =

+ Z 4681;-"7:8"“‘:( _1)”+(M—1)/2

e ()T

tanh vy, yc

Simplifying this equation gives the following result, as presented in equation (22).

1 [t fte Ixz  nxz
aTc/_c . (ox +a,)|y cos——cosszdz

—1)i+(m-1)/2 2.2 )
-y b, | L faee ()
7 blaz, + ()] et 4 o
(mrb)’ (zf)’}]
+ | — — tanhay..a
[ a

463000 n(M-1)/3 M3ix? or 2
. 'f[vi l)("')] ["‘ 9%{ e (9]

2 2
+ (I_rﬁ) (H) }] tanh 4, ¢
a c
rx &'6372

t P (a’n’ + c’z’) (2u +1— A.btanh B.,b + Aubeoth ﬁ,,,b)
'w!

A A Sy A it ATyt -




APPENDIX B

DERIVATION OF EQUATION (24)

From Equation (23)

Hpnna { .
Or + 0, = E z 1+ amnacoth o, ya) coshap,nz ~ ampyz sinha NI}
s +0; CO!h Emna ( mN' 'mN! ) 'mN: mN: m

1ry N1rz 2 Nix? B Inc ?
X CO8 sin —— +ZZ[§ c’coshﬂmb v 4 cosh Bmy + -

N 1
X {(1 — Bpbcoth Byb) cosh Bpy + By sinh ﬁmy}] sin 2:2 cos %

2
Limc 2.2 . [£.4
+ z Z 7Imb2 e — [2um x°sinh vz + - {(1 ~ Yimc tanhq,¢)

. irz mnry
X $inh ¥im z + Yim 2 cosh 'n,,.z} cos o cos e

Limc .
+ Z Z pri . {(1 + Yimc tanh yim ) sinh Yim z — Yim 2 cosh Yim z}

Ixz mny H,.na 2 2 Nxb\?
xcos—cos——+ZZ———————— 2vm*r’ coshanye + | —

nb?coshamna 2¢
R mxy . Nr:
X {(1 — ampacothamya) coshampnz + ampz sinh amnz} cos sin
b 2c
Nra\’®
20 7° ( ) 1~ Bmbcoth Bb
+ ;Zﬁ a’coshﬁmb[ wlia? cosh By + | —- {( Bmibcoth Bmb)
nz inz
cOs —

x cosh Bviy + Bmysinh Bmy}] sin

On a lateral surface of y = b, 6y = 0 and so the bulk stress on this surface becomes
op = 0, + 0,. Putting y = b into the above equation, and noting that cosmnr = (~1)™
for m = 0,1,2..., yields the following result.

L




T———\

APPENDIX B
H, . Nwx:
- Z Z c:;\;!ﬂam”a {(1 + ampya coth amna) cosh ampnz — ampyz sinh a,,,N::} sin 2 (N

Nig?
* Z Z 8%, c’ coshﬂmb [2" 4" cosh Bnb + ( ) {(1 — Bmbcoth Bmb)

x cosh fmb + Parbsinh ﬂmb}] sin N2 ’c” cos % an

by 2
+ZZ Lime(-1)7 [2vm21r’sinh11mz+(l—z—) {(1—71mctanh‘nmc)

bz sinh yimc
1
X sinh ¥imz + Yim2z cosh‘nmz}] cos—:—z (1
Lime{-1 irx
+ Z 2 sl::lh(‘n,,.)c {(l + Yimctanh yyne) sinh vz — yimz cosh = } cos — (IV)

Hunya(-1)™ 32 Nxb\?
+sz 2vm’x” coshamne + 50 {(1~—a,,.Nacotha,,.Na)

Nx
x cosh ampnz + amyzsinh OmNI}] sin Tz {V)

Kmb 2 2 (Nmz)2 _
+Zz%azmhﬂ b[Zulw cosh B + == ) {(1 - Bmbeoth Bub)

x cosh Gpb + ﬁmbsinhﬁmb}] sin Ez—t cos yg (V1)
c

To determine the Fourier coefficients H,,n, A n; and Ly, it is necessary to take the double
Fourier transform of the above equation.

+c¢
/ / (0,+a,)cosp—;r—sm21:dzd~
e -

Q

+¢ p+a
//[(I)+(II)+(III)+(IV)+(V)+(VI) cos——sm dzd:

Note that p and Q are now fixed positive integers.

et g v
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Integrating the RHS, taking term (I}

/ / (I) cos P77 gin ?2— dzdz
+a

= Z Z Hnya(-)" [(l + amnacoth amna) coshamnNz coOs LS
cosh o, ya —a a

+a +c

. Nmz .
~ amN / z sinh amyz cos AL / sin —— sin Qx: d:
a 2¢ 2¢

-a -c

2amn(-1)P .
—Z Hpnac(~ 1) [(1+amNacotthNa)_a_'N(—l)_25’nh°"‘Na

coshamya ol + (?
2
p 2amn{—1)7 |a? L2
Z('_"‘Ni(_l)_coshamna—i- i il 2(; ) ] sinh amna
e+ (%) fon+ ()]
—1)ym+r
= Z Mﬂc(—%‘ [(1 + amyacoth amya)tanhamya
ek (%)
2
ot = (%)
— amya + ——————; tanhampya
azy+ (%)
Put [ = p and simplify to give :
™+
= 4H"'Na”'Nac( 12) tanh anna
= [ (5)]
Taking term (II)
+c¢ pta -
/ / {I1) cos P72 gin Qrz ded:
¢ J-a a 2¢
_ Kmb Nig? I1rc)2
= EN:; BT cosh B [2u 4 coshBmb + ( - {(1 ~ Bmbcoth Bmb)
+a ] +e Nxz
x cosh Bab + Bmbsinh ﬁmb}] / cos =2 cos P25 dz/ sin =% gin Qr: d:

—a a e 2c 2c

_ Kmab61 N’ﬂ': Ixc .
= Bigc cosh Bb [Zu 3 coshBpb + ( ) {(l -ﬁmbcuthﬁmb)coshﬁmb+ﬂmbsmhﬁmb}

242
_ Kmabby [ZVN ” (z«c) { _pmbcothﬂmb)+ﬁmbunhﬁmb}]
ﬂmc 4

[
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where

§=2 when [=0, & =1 when [ #0

Taking term (III)
+¢ pta
prz . Q== .
'/; /:a (111} cos —sin o dzd:

lec( n" 2.2 (‘_’_b)z
_ZZ T} sinh vime {2um n + = (1—71,,.ctanh‘nmc)}

+e Ixb 2 +c ) -
x / sinh yim z sin Q=: dz + (—L) Tim / z coshyimz sin 9"— dz
2¢ a 2¢

—c ~c

rre ixz
X cos — ¢os PrT 4z
—a a

Z Limbiac(-1)™ [{21/77! 4 (l b) (1—7,,,.ctanh‘nmc)}

2
— b sinh yimc

2, _1)e-1y/2 Ixb\? 2 o
9 Yim(—1) — cosh rime + (_;_) ,nm_l"f_(__)____z— sinh Yim<¢
s
yi.+ (9,?') Yim * (927*)

_e-n/ _(e=\?
_(‘Ii’)z.,,,,,z( 1) nz[-n’m (:) ]coshmc]

a [7'%" +(;L:)2]2

m4(@-1)/2 \ !
_ 2Limb1ac(—1) {{ min? 4 ( 1;6) ( —'n,,.c'-anhmmc)}

bt (%)
91)’

: R
x coth ygme + (l_::_b) Yim€ — (ljﬂ) ————(—1———2coth'y;mc
a 2 *

22+ (%)
Put N = Q, re-arrange and simplify to give:

- N=x\2

2
N
461L|mac(—l)"'+(N'”“ 2 2 Ixb\?2 ( :)
— “lomn? 4+ | — —_—— cothyime
™ 71mb2[‘7l’m+ T) ] H +(

where

§6=2 when (=0, & =1 when 1#£0
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The integrals of parts (IV) (V) and (V1) were detived using the same approach as shown
in (1) (11) and (III).

2
~

+¢ +a
/ (IV}cos P72 sin -Q—f—z» dzdz
—c a c

)N =13
(=1 coth 1ime

Z 451 L;,,.‘y,"‘,,, ac

= 373
© b (3]

+c +a -
[ / (V) cos P™Z gin @r: ird:
-c -a a 2¢

2
4Hpyac(—1)" [ 22 (wa)2 ()

. vmért + 2] tanh a,, ya
™ amnb’{afn,\,-%(—}) ] L4

<

+c +a
/ / (VI)cospl-zsin»Q—”jdzdz
-¢ J-a a 2

. 2
:M wiin? + (i‘l_}_\'g) {(I —Gmbcothﬂmb)+dmbtanhl3mb}
20 2

where

6,=2 when [=0, & =1 when (#0




The individual integral components may now be summed to give the following.

/ ™ / * [(1) + (I1) + (II) + (IV) + (V) + (VI)] cos 2% sin 921:—’ dzdz

_ 4Hpyad yac(—1)™H

[t (8)T

ml 3 (L"):
4H,, nac(~1) [m,”, . (Nrb) e
2

= amnt?fady + ()]

tanh A NC

2.2 2
Kg;al:ﬁ [2,,” 4* + (ITTC) {(1 — Banbcoth Bab) +,6Mbtanhﬁmb}]
Nt
2
5[‘;’—!‘2—6‘ [2.,1:,: + (9%2) {(1 - Buib coth Bmb) +,6mbtanhﬂmb}]
N

45,1 1)HN-1)/2 trb\? (”—")2
1Limac(— i {umzr2+ (1) .__f‘__.__’] coth Yim
= b [r + (52)] S/ e (2
N Z “lL'm_nsmac(_l)mﬂN—l)/z

373 cothyime
" e (3)]

Simplifying this equation gives the following result, as presented in equation (24).

Nxz
2c

_ 4H y(~1)™H 1 Ix\?
s T et oo o (5)
™, a

(Nxb)‘ (z:)’}]
+ — tanhamya
2c a

48y Ly (~1)™+N-1/2 1 Nxy?
1L )N 3 ‘Y.’,,.+7‘ 5 vm?x? 71’m+('?c‘)
m o[+ ()] "

(ub)’ (Nr)’}]
+ [ — - coth yimc
a 2c

+ c’x'] (2v + 1 - Barbeoth B + Bmbtank me)

1 ¥t Ixx |,
;ch/_C . (c,-{v,)[y:bcoa —;—-sm dzdz

Kmﬁl =2 | N3a?
Bipaic? 4

P
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